Plotting Graphcs and Heatmpas ============================= Graphs ~~~~~~ It may be necessary to install first .. code:: r install.packages("igraphdata", repos = "http://cran.r-project.org") .. code:: python library(igraph) library(igraphdata) .. code:: python data(macaque) .. code:: python plot(macaque, layout=layout.auto, vertex.shape="circle", vertex.size=8, edge.arrow.size=0.5, vertex.label=NA) .. image:: MiscGraphics_files/MiscGraphics_4_0.png :width: 600 Heatmap ~~~~~~~ .. code:: python heatmap(as.matrix(mtcars), Rowv = NA, Colv = NA, scale = "column") .. image:: MiscGraphics_files/MiscGraphics_6_0.png :width: 600 Heatmap with dendrogram ~~~~~~~~~~~~~~~~~~~~~~~ .. code:: python heatmap(as.matrix(mtcars), scale = "column") .. image:: MiscGraphics_files/MiscGraphics_8_0.png :width: 600 Fancy heatmaps ~~~~~~~~~~~~~~ Also see `d3heatmaps `__ if you want an interactive heatmap. This does not seem to work within the notebook but will work in RStudio or an R script. .. code:: python library(pheatmap) .. code:: python pheatmap(as.matrix(mtcars), scale = "column") .. image:: MiscGraphics_files/MiscGraphics_11_0.png :width: 600 .. code:: python library(gplots) .. code:: python heatmap.2(as.matrix(mtcars), scale = "column", col=redgreen) .. image:: MiscGraphics_files/MiscGraphics_13_0.png :width: 600 Work! ^^^^^ Here we will try to replicate the noise discovery heatmap shown in the statistics class. .. code:: python suppressMessages(library(genefilter)) Perform noise discovery ~~~~~~~~~~~~~~~~~~~~~~~ .. code:: python set.seed(123) n <- 20 # number of subjects m <- 20000 # number of genes alpha <- 0.005 # significance level # create a matrix of gene expression values with m rows and 2*n columns M <- matrix(rnorm(2*n*m), m, 2*n) # give row and column names rownames(M) <- paste("G", 1:m, sep="") colnames(M) <- paste("id", 1:(2*n), sep="") # assign subjects inot equal sized groups grp <- factor(rep(0:1, c(n, n))) # calculate p-value using t-test for mean experession value of each gene pvals <- rowttests(M, grp)$p.value # extract the genes which meet the specified significance level hits <- M[pvals < alpha,] - Use pheatmap to plot a heatmap - Remove the row names (Google or use R's built-in help to figure out to do this) - Use this color palette to map expression values to a red-blakc-green scale ``colorRampPalette(c("red3", "black", "green3"))(50)``