Functional Programming
======================
Functional programming refers to a specialized way of writing code so
that 'side effects' are avoided, making the outcome of the code easier
to predict. It is 'declarative' - functions are given as expressions, as
opposed to 'imperative', where commands are issued to change the state
of the program (e.g. change the value of variables by assignment).
Historically, programming has been imperative, but the notion of
functional programming is gaining ground lately, especially because of
its connection to paralellization and distributed computing.
We won't discuss the methodology in detail, but we will cover the basic
R tools for functional programming - tools that allow us to apply
functions across data structures. These tools allow us to avoid looping
by extending the ability to vectorize operations.
R apply
-------
``apply`` maps a function to a matrix:
.. code:: python
m<-matrix(rnorm(30),ncol=3,nrow=10)
print(m)
.. parsed-literal::
[,1] [,2] [,3]
[1,] -1.88415809 -0.09135793 -0.04933136
[2,] 0.27581447 0.59928155 -0.01019772
[3,] 0.23509325 -1.38182122 -1.49150530
[4,] -1.29592234 -0.10180487 -1.62481563
[5,] 0.31163838 -1.16070666 0.60327878
[6,] 0.23685780 0.80313813 1.49028075
[7,] -0.51883441 0.30667497 0.81876505
[8,] -0.01050835 -1.49125738 1.67045716
[9,] -0.17823674 0.50897338 -1.11499439
[10,] 1.00128144 0.70455616 -0.23839229
.. code:: python
# Get the mean of the rows, returned as a vector
apply(m,1,mean)
.. raw:: html
- -0.674949128760326
- 0.288299434064387
- -0.87941108856336
- -1.00751428266863
- -0.0819298347992709
- 0.84342555958658
- 0.202201872370568
- 0.0562304744778094
- -0.261419251214308
- 0.489148438901616
.. code:: python
# Get the mean of the columns, returned as a vector
apply(m,2,mean)
.. raw:: html
- -0.18269745842911
- -0.130432387900508
- 0.00535450434813664
Work!
~~~~~
- Find the sum of each of the columns of the matrix m.
- Find the product of each of the rows of the matrix m.
Custom Functions and ``apply``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Any function that acts on a vector can be applied to the rows or columns
of a matrix using ``apply``. For example:
.. code:: python
apply(m,1,function(x) x*x)
.. raw:: html
3.5500517085 | 0.0760736240 | 0.0552688372 | 1.6794147170 | 0.0971184776 | 0.0561016187 | 0.2691891415 | 0.0001104255 | 0.0317683363 | 1.0025645300 |
0.008346272 | 0.359138375 | 1.909429885 | 0.010364232 | 1.347239959 | 0.645030852 | 0.094049538 | 2.223848573 | 0.259053905 | 0.496399383 |
0.0024335833 | 0.0001039935 | 2.2245880524 | 2.6400258400 | 0.3639452898 | 2.2209367091 | 0.6703762101 | 2.7904271078 | 1.2432125008 | 0.0568308829 |
.. code:: python
apply(m,1,function(x) x%*%x)
.. raw:: html
- 3.56083156395646
- 0.435315992058913
- 4.18928677483859
- 4.32980478918986
- 1.80830372628942
- 2.92206917996323
- 1.03361488996985
- 5.01438610625781
- 1.5340347423788
- 1.55579479637673
Note that ``apply`` returns an object of the appropriate dimension
automagically. In the first example, the multiplication operator is the
element-by-element product, so ``apply`` give us a matrix whose rows are
the result of multiplying each of the 3 rows by itself. In the second
example, the multiplication operator is a dot product, so ``apply``
returns a 10-dimensional vector with each entry the squared norm of the
3-dimensional row vector.
Work!
~~~~~
Use ``apply`` to count the number of negative values in each column of
m.
``sapply`` and ``lapply``
~~~~~~~~~~~~~~~~~~~~~~~~~
R has several other versions of apply, for specific types of input and
output data structures. Two of the most common are ``lapply`` and
``sapply``. ``sapply`` can operate on either a list or a vector and
returns a list or vector, respectively. ``lapply`` can operate on either
a list or a vector, but returns a list.
For example:
.. code:: python
v<-1:10
sapply(v,function(x) x*2)
.. raw:: html
- 2
- 4
- 6
- 8
- 10
- 12
- 14
- 16
- 18
- 20
.. code:: python
v<-1:10
lapply(v,function(x) x*2)
.. raw:: html
- 2
- 4
- 6
- 8
- 10
- 12
- 14
- 16
- 18
- 20
Aside on Lists
~~~~~~~~~~~~~~
You may be wondering what is the difference between lists and vectors?
Well, vectors are lists - but they are a specific type of list that
contains only numbers. Lists can contain different types of objects.
Consider the following:
.. code:: python
my.list<-list(v,m)
my.list
.. raw:: html
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
-1.88415809 | -0.09135793 | -0.04933136 |
0.27581447 | 0.59928155 | -0.01019772 |
0.2350933 | -1.3818212 | -1.4915053 |
-1.2959223 | -0.1018049 | -1.6248156 |
0.3116384 | -1.1607067 | 0.6032788 |
0.2368578 | 0.8031381 | 1.4902807 |
-0.5188344 | 0.3066750 | 0.8187651 |
-0.01050835 | -1.49125738 | 1.67045716 |
-0.1782367 | 0.5089734 | -1.1149944 |
1.0012814 | 0.7045562 | -0.2383923 |
As you can see, ``my.list`` contains a vector AND a matrix. Now, lets
use ``lapply``:
.. code:: python
lapply(my.list,function(x) x*2)
.. raw:: html
- 2
- 4
- 6
- 8
- 10
- 12
- 14
- 16
- 18
- 20
-3.76831618 | -0.18271587 | -0.09866272 |
0.55162895 | 1.19856310 | -0.02039544 |
0.4701865 | -2.7636424 | -2.9830106 |
-2.5918447 | -0.2036097 | -3.2496313 |
0.6232768 | -2.3214133 | 1.2065576 |
0.4737156 | 1.6062763 | 2.9805615 |
-1.0376688 | 0.6133499 | 1.6375301 |
-0.0210167 | -2.9825148 | 3.3409143 |
-0.3564735 | 1.0179468 | -2.2299888 |
2.0025629 | 1.4091123 | -0.4767846 |
What does ``sapply`` do?
.. code:: python
sapply(my.list,function(x) x*2)
.. raw:: html
- 2
- 4
- 6
- 8
- 10
- 12
- 14
- 16
- 18
- 20
-3.76831618 | -0.18271587 | -0.09866272 |
0.55162895 | 1.19856310 | -0.02039544 |
0.4701865 | -2.7636424 | -2.9830106 |
-2.5918447 | -0.2036097 | -3.2496313 |
0.6232768 | -2.3214133 | 1.2065576 |
0.4737156 | 1.6062763 | 2.9805615 |
-1.0376688 | 0.6133499 | 1.6375301 |
-0.0210167 | -2.9825148 | 3.3409143 |
-0.3564735 | 1.0179468 | -2.2299888 |
2.0025629 | 1.4091123 | -0.4767846 |
Same thing! Well, what we see here is that R is sometimes smarter than
us. ``sapply`` returns a list, because we gave it a list. Let's try
something else:
.. code:: python
another.list<-list(1:5)
mult.list<-sapply(another.list,function(x) x*2)
print(mult.list)
.. parsed-literal::
[,1]
[1,] 2
[2,] 4
[3,] 6
[4,] 8
[5,] 10
Now what? ``sapply`` gave us a *matrix*.
.. code:: python
dim(mult.list)
.. raw:: html
- 5
- 1
Why R does this is a bit beyond our scope. The take-away here is to be
careful with data types, and try to give R the right one. If you want a
vector returned, give R a vector, not a list!
One more thing about lists
^^^^^^^^^^^^^^^^^^^^^^^^^^
If you mix character or logical types, you can get unintended results:
.. code:: python
my.list<-list(1:5,TRUE,TRUE)
mult.list<-sapply(my.list,function(x) x*2)
print(mult.list)
.. parsed-literal::
[[1]]
[1] 2 4 6 8 10
[[2]]
[1] 2
[[3]]
[1] 2
R interpreted ``TRUE`` as a numeric 1.
.. code:: python
my.list<-list(1:5,"a","b")
mult.list<-sapply(my.list,function(x) x*2)
print(mult.list)
::
Error in x * 2: non-numeric argument to binary operator
.. parsed-literal::
[,1]
[1,] 2
[2,] 4
[3,] 6
[4,] 8
[5,] 10
.. code:: python
my.list<-list(1:5,"1","2")
mult.list<-sapply(my.list,function(x) x*2)
print(mult.list)
::
Error in x * 2: non-numeric argument to binary operator
.. parsed-literal::
[,1]
[1,] 2
[2,] 4
[3,] 6
[4,] 8
[5,] 10
In these last two examples, R returns an error, because we have tried to
multiply by a character type.