Introduction to DESeq2 ====================== This notebook serves as a tutorial for using the DESeq2 package. Please be sure to consult the excellent vignette provided by the DESeq2 package. Hopefully, we will also get a chance to review the edgeR package (which also has a very nice vignette which I suggest that you review) **Load packages** Load requisite R packages .. code:: python library(DESeq2) library(tools) options(width=100) :: Error in library(DESeq2): there is no package called ‘DESeq2’ Importing and Inspecting Data ----------------------------- Let's set the file name containing the phenotype data and the directory storing the count files from the htseq-count step. You will have to adjust these strings. Note that it is assumed that all count files are stored under a single directory. .. code:: python phfile="sampletable.txt" cntdir="/home/owzar001/CURRENT/summercourse-2015/Data/COUNTS" Next, read in the phenotype data from the sample file. It is always a good idea to display the md5sum hash key for the file. Note that when importing the file using read.table(), the stringsAsFactor argument is set to FALSE. This imports strings as character rather than factor objects. .. code:: python md5sum(phfile) phdata=read.table(phfile,sep=",",stringsAsFactor=FALSE) .. raw:: html sampletable.txt: '10cdaaa6e5fc76ab92b6d845d33a2a2f' It is always a good idea to check the dimension of the file you have read in .. code:: python dim(phdata) .. raw:: html
  1. 6
  2. 3
Finally, it is a good idea to print out the sample data (or at least the first few rows) .. code:: python phdata .. raw:: html
V1V2V3
1AGTCAA_counts.tsvAGTCAA0
2AGTTCC_counts.tsvAGTTCC0
3ATGTCA_counts.tsvATGTCA0
4CCGTCC_counts.tsvCCGTCC1
5GTCCGC_counts.tsvGTCCGC1
6GTGAAA_counts.tsvGTGAAA1
Next, we reformat the phenotype data object with more informative column names and by adding the md5sum hash keys for the count files. When dealing with directory and file names you should use file.path(), dirname() and basename(). Check out the help files .. code:: python colnames(phdata)=c("filename","sampid","trt") phdata[["md5sum"]]=md5sum(file.path(cntdir,phdata[["filename"]])) phdata .. raw:: html
filenamesampidtrtmd5sum
1AGTCAA_counts.tsvAGTCAA0NA
2AGTTCC_counts.tsvAGTTCC0NA
3ATGTCA_counts.tsvATGTCA0NA
4CCGTCC_counts.tsvCCGTCC1NA
5GTCCGC_counts.tsvGTCCGC1NA
6GTGAAA_counts.tsvGTGAAA1NA
The first step to an analysis using the DESeq2 package is to import the raw counts. If these counts stored in files generated by htseq-count, then you may use the DESeqDataSetFromHTSeqCount() function from the package. This function expects a sample table that contains the sample id in the first column and the count file name in teh second column. Our sample table is not in that format. It is easy to reorder the columns .. code:: python phdata=phdata[c("sampid","filename","trt","md5sum")] phdata .. raw:: html
sampidfilenametrtmd5sum
1AGTCAAAGTCAA_counts.tsv0NA
2AGTTCCAGTTCC_counts.tsv0NA
3ATGTCAATGTCA_counts.tsv0NA
4CCGTCCCCGTCC_counts.tsv1NA
5GTCCGCGTCCGC_counts.tsv1NA
6GTGAAAGTGAAA_counts.tsv1NA
Also, DESeq2 prefers that the treatment variable is of factor class. So we will convert it .. code:: python phdata[["trt"]]=as.factor(phdata[["trt"]]) Now, we import the counts. Note that the first argument is the sample table while the second is the directory storing the count files. The last argument specifies the design. More on this later. .. code:: python dds=DESeqDataSetFromHTSeqCount(sampleTable = phdata,directory = cntdir,design=~trt) :: Error in eval(expr, envir, enclos): could not find function "DESeqDataSetFromHTSeqCount" **Inspect object** Let's has a look at the object we have created. .. code:: python dds :: Error in eval(expr, envir, enclos): object 'dds' not found Note that this object is of class DESeqDataSet. It contains data on 4436 genes on 6 samples. Use the colData() function to see what you have read in .. code:: python colData(dds) :: Error in eval(expr, envir, enclos): could not find function "colData" The first thing you may want to do is to have a look at the raw counts you have imported. You can use the counts(). Let's looks the first three genes (use the head() function to avoid printing out all genes). Before that notw the dimension of the count matrix (does it look correct?) .. code:: python dim(counts(dds)) :: Error in eval(expr, envir, enclos): could not find function "counts" Now print the raw counts for the first three genes (how can you verify this looking at the files from htseq-count) .. code:: python head(counts(dds),3) :: Error in head(counts(dds), 3): could not find function "counts" **8Slots of an S4 class** To get the slots of an S4 class use slotNames() .. code:: python slotNames(dds) :: Error in is(x, "classRepresentation"): object 'dds' not found Now let's look at a few slots: .. code:: python This gives the design of the study :: Error in parse(text = x, srcfile = src): :1:6: unexpected symbol 1: This gives ^ .. code:: python dds@design :: Error in eval(expr, envir, enclos): object 'dds' not found The dispersion function is NULl for now (more on this later) .. code:: python dds@dispersionFunction :: Error in eval(expr, envir, enclos): object 'dds' not found This slots return gene specific information (it will be populated later) .. code:: python dds@rowData :: Error in eval(expr, envir, enclos): object 'dds' not found This slot returns the sample data .. code:: python dds@colData :: Error in eval(expr, envir, enclos): object 'dds' not found Before, going to the next step, let's look at the output from mcols() .. code:: python mcols(dds) :: Error in eval(expr, envir, enclos): could not find function "mcols" Estimate Size Factors and Dispersion Parameters ----------------------------------------------- You recall that DESeq requires that we have estimates for sample specific size factors and gene specific dispersion factors. More specifically, recall that DESeq models the count :math:`K_{ij}` (gene :math:`i`, sample :math:`j`) as negative binomial with mean :math:`\mu_{ij}` and dispersion parameter :math:`\alpha_i`. Here :math:`\mu_{ij}=s_j q_{ij}` where :math:`\log_2(q_{ij}) = \beta_{0i} + \beta_{1i} z_j`. Here :math:`s_j` is the sample :math:`j` specific size factor. Size Factors ------------ We begin by estimating the size factors :math:`s_1,\ldots,s_6`: .. code:: python dds <- estimateSizeFactors(dds) :: Error in eval(expr, envir, enclos): could not find function "estimateSizeFactors" Now, compare the dds object to that of before applying the estimateSizeFactors() function. What has changed? What remains unchanged? .. code:: python dds :: Error in eval(expr, envir, enclos): object 'dds' not found Note that there is a sizeFactor added to colData. Let's look at it more carefully .. code:: python colData(dds) :: Error in eval(expr, envir, enclos): could not find function "colData" You can also get the size factors directly (why are there six size factors?) .. code:: python sizeFactors(dds) :: Error in eval(expr, envir, enclos): could not find function "sizeFactors" It is preferable to limit the number of decimal places. Next show the size factors rounded to 3 decimal places .. code:: python round(sizeFactors(dds),3) :: Error in eval(expr, envir, enclos): could not find function "sizeFactors" Now that the size factors have been estimated, we can get "normalized" counts .. code:: python head(counts(dds),3) head(counts(dds,normalize=TRUE),3) :: Error in head(counts(dds), 3): could not find function "counts" :: Error in head(counts(dds, normalize = TRUE), 3): could not find function "counts" Note that these are the counts divided by the size factors. Compare the first row of the last table ("normalized" counts for gene 1) to the hand calculation below. .. code:: python counts(dds)[1,]/sizeFactors(dds) :: Error in eval(expr, envir, enclos): could not find function "counts" Exercise: How do you get the raw counts for gene "GeneID:12930116"? .. code:: python counts(dds)["GeneID:12930116",] :: Error in eval(expr, envir, enclos): could not find function "counts" Exercise: How do you get the normalized counts for gene "GeneID:12930116"? .. code:: python counts(dds,normalize=TRUE)["GeneID:12930116",] :: Error in eval(expr, envir, enclos): could not find function "counts" Exercise: Get a summary (mean, median, quantiles etc ) of the size factors .. code:: python summary(sizeFactors(dds)) :: Error in summary(sizeFactors(dds)): could not find function "sizeFactors" Before going to the next step, let's look at the dispersionFunction slot .. code:: python dds@dispersionFunction :: Error in eval(expr, envir, enclos): object 'dds' not found Dispersion Parameters --------------------- Next, we get the dispersion factors :math:`\alpha_1,\ldots,\alpha_{4436}` .. code:: python dds=estimateDispersions(dds) :: Error in eval(expr, envir, enclos): could not find function "estimateDispersions" Now inspect the dds object again and note that the rowRanges slot has extra information ("metadata column names(0):" before versus "column names(9): baseMean baseVar ... dispOutlier dispMAP") .. code:: python dds :: Error in eval(expr, envir, enclos): object 'dds' not found We can extract the gene specific dispersion factors using dispersions(). Note that there will be one number per gene. We look at the first four genes (rounded to 4 decimal places) .. code:: python alphas=dispersions(dds) :: Error in eval(expr, envir, enclos): could not find function "dispersions" Verify that the number of dispersion factors equals the number of genes .. code:: python length(alphas) :: Error in eval(expr, envir, enclos): object 'alphas' not found Print the dispersion factors for the first 5 genes rounded to four decimal points .. code:: python round(alphas[1:5],4) :: Error in eval(expr, envir, enclos): object 'alphas' not found Extract the metadata using mcols() for the first four genes (recall that it was previously .. code:: python mcols(dds)[1:4,] :: Error in eval(expr, envir, enclos): could not find function "mcols" Exercise: Provide statistical summaries of the dispersion factors .. code:: python summary(dispersions(dds)) :: Error in summary(dispersions(dds)): could not find function "dispersions" Exercise: Summarize the dispersion factors using a box plot (may want to log transform) .. code:: python boxplot(log(dispersions(dds))) .. image:: DESeq2Notebook_files/DESeq2Notebook_86_0.png :width: 600 :: Error in boxplot(log(dispersions(dds))): could not find function "dispersions" Differential Expression Analysis -------------------------------- We can now conduct a differential expression analysis using the DESeq() function. Keep in mind that to get to this step, we first estimated the size factors and then the dispersion parameters. .. code:: python ddsDE=DESeq(dds) :: Error in eval(expr, envir, enclos): could not find function "DESeq" We can get the results for the differential expression analysis using results() .. code:: python myres=results(ddsDE) :: Error in eval(expr, envir, enclos): could not find function "results" Let's look at the results for the first four genes .. code:: python myres[1:4,] :: Error in eval(expr, envir, enclos): object 'myres' not found Calculate BH adjusted P-values by "hand" using the p.adjust() function .. code:: python BH=p.adjust(myres$pvalue,"BH") BH[1:4] :: Error in p.adjust(myres$pvalue, "BH"): object 'myres' not found :: Error in eval(expr, envir, enclos): object 'BH' not found You can get the descriptions for the columns from the DE analysis .. code:: python data.frame(desc=mcols(myres)$description) :: Error in data.frame(desc = mcols(myres)$description): could not find function "mcols" We can get summaries of the results: .. code:: python summary(myres,0.05) :: Error in summary(myres, 0.05): object 'myres' not found You can sort the results by say the unadjusted P-values .. code:: python myres[order(myres[["pvalue"]])[1:4],] :: Error in eval(expr, envir, enclos): object 'myres' not found To get the list of genes with unadjusted P-values < 0.00001 and absolute log2 FC of more than 4 .. code:: python subset(myres,pvalue<0.00001&abs(log2FoldChange)>4) :: Error in subset(myres, pvalue < 1e-05 & abs(log2FoldChange) > 4): object 'myres' not found To get the list of genes with unadjusted P-values < 0.00001 and upregulated genes with log2 FC of more than 4 .. code:: python subset(myres,pvalue<0.00001&log2FoldChange>4) :: Error in subset(myres, pvalue < 1e-05 & log2FoldChange > 4): object 'myres' not found The P-values for the four top genes are beyond machine precision. You can use the format.pval() function to properly format the P-values. PLEASE promote ending the practice of publishing P-values below machine precision. (that would be akin to stating the weight of an object that weighs less than one pound with scale that whose minimum weight spec is 1lbs). .. code:: python myres$pval=format.pval(myres$pvalue) myres[order(myres[["pvalue"]])[1:4],] :: Error in format.pval(myres$pvalue): object 'myres' not found :: Error in eval(expr, envir, enclos): object 'myres' not found Let's look at a volcano plot .. code:: python plot(myres$log2FoldChange,-log10(myres$padj),pch=19,cex=0.3,xlab="Log2 FC",ylab="-log10(BH Adjusted P-value)") .. image:: DESeq2Notebook_files/DESeq2Notebook_109_0.png :width: 600 :: Error in plot(myres$log2FoldChange, -log10(myres$padj), pch = 19, cex = 0.3, : object 'myres' not found Extract results for genes GeneID:12932226 and GeneID:12930116 .. code:: python myres[c("GeneID:12932226","GeneID:12930116"),] :: Error in eval(expr, envir, enclos): object 'myres' not found Exercise: Annotate the hits with adjusted P-values < 0.05 and absolute log2 FC greater than 2 in red .. code:: python plot(myres$log2FoldChange,-log10(myres$padj),pch=19,cex=0.3,xlab="Log2 FC",ylab="-log10(BH Adjusted P-value)",col=ifelse(myres$padj<0.05&abs(myres$log2FoldChange)>2,"red","black")) .. image:: DESeq2Notebook_files/DESeq2Notebook_113_0.png :width: 600 :: Error in plot(myres$log2FoldChange, -log10(myres$padj), pch = 19, cex = 0.3, : object 'myres' not found Converting/Normalizing Counts to "Expressions" ---------------------------------------------- **Normalized Counts** We have already shown how to "normalize" the counts using the estimated size factors .. code:: python head(counts(dds,normalize=TRUE),3) :: Error in head(counts(dds, normalize = TRUE), 3): could not find function "counts" Plot the counts stratified by treatment for the 2nd gene .. code:: python plotCounts(dds, 2,intgroup="trt") .. image:: DESeq2Notebook_files/DESeq2Notebook_119_0.png :width: 600 :: Error in eval(expr, envir, enclos): could not find function "plotCounts" Or alternatively (better) .. code:: python plotCounts(dds, "GeneID:12930115",intgroup="trt") .. image:: DESeq2Notebook_files/DESeq2Notebook_121_0.png :width: 600 :: Error in eval(expr, envir, enclos): could not find function "plotCounts" Now get this plot for the top hit .. code:: python plotCounts(dds, "GeneID:12931678",intgroup="trt") .. image:: DESeq2Notebook_files/DESeq2Notebook_123_0.png :width: 600 :: Error in eval(expr, envir, enclos): could not find function "plotCounts" FPM ---------------------------------------- .. code:: python Another approach is to FPM: fragments per million mapped fragments :: Error in parse(text = x, srcfile = src): :1:9: unexpected symbol 1: Another approach ^ .. code:: python head(fpm(dds),3) :: Error in head(fpm(dds), 3): could not find function "fpm" Let's calculate the FPM manually. For gene :math:`i` sample :math:`j`, the FPM is defined as :math:`\frac{K_{ij}}{D_j}\times 10^{6}` where :math:`D_j=\sum_{i=1} K_{ij}` is the read depth for sample :math:`j`. First get the read depth for each sample .. code:: python D=colSums(counts(dds)) D :: Error in is.data.frame(x): could not find function "counts" .. raw:: html
function (expr, name) 
    .External(C_doD, expr, name)
By default, the fpm() function uses a robust approach. We will disable this right now as to replicate the standard FPM. Let's look at gene 1 .. code:: python fpm1=fpm(dds,robust=FALSE)[1,] fpm1 :: Error in eval(expr, envir, enclos): could not find function "fpm" :: Error in eval(expr, envir, enclos): object 'fpm1' not found Now get the raw counts for gene 1 .. code:: python cnt1=counts(dds)[1,] cnt1 :: Error in eval(expr, envir, enclos): could not find function "counts" :: Error in eval(expr, envir, enclos): object 'cnt1' not found Now calculate the FPM for gene 1 .. code:: python myfpm1=cnt1/D*1e6 myfpm1 :: Error in eval(expr, envir, enclos): object 'cnt1' not found :: Error in eval(expr, envir, enclos): object 'myfpm1' not found This is how you check if two numeric columns are "equal" .. code:: python min(abs(fpm1-myfpm1)) :: Error in eval(expr, envir, enclos): object 'fpm1' not found FPKM ---- To calculate the FPKM (fragments per kilobase per million mapped fragments) we need to add annotation to assign the feature lengths. More specifically, for gene :math:`i` sample :math:`j`, the FPKM is defined as :math:`\frac{K_{ij}}{\ell_i D_j}\times 10^3 \times 10^{6}` where :math:`\ell_i` is the "length" of gene :math:`i` (fragments for each :math:`10^3` bases in the gene for every :math:`\frac{D_j}{10^6}` fragments. More on this later. Regularized log transformation ------------------------------ The regularized log transform can be obtained using the rlog() function. Note that an important argument for this function is blind (TRUE by default). The default "blinds" the normalization to the design. This is very important so as to not bias the analyses (e.g. class discovery .. code:: python rld=rlog(dds,blind=TRUE) :: Error in eval(expr, envir, enclos): could not find function "rlog" Hierarchical clustering using rlog transformation .. code:: python dists=dist(t(assay(rld))) plot(hclust(dists)) .. image:: DESeq2Notebook_files/DESeq2Notebook_143_0.png :width: 600 :: Error in t(assay(rld)): could not find function "assay" :: Error in hclust(dists): object 'dists' not found PC Analysis using the rlog transformation .. code:: python plotPCA(rld,intgroup="trt") .. image:: DESeq2Notebook_files/DESeq2Notebook_145_0.png :width: 600 :: Error in eval(expr, envir, enclos): could not find function "plotPCA" .. code:: python sessionInfo() .. parsed-literal:: R version 3.1.2 (2014-10-31) Platform: x86_64-apple-darwin13.4.0 (64-bit) locale: [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 attached base packages: [1] tools stats graphics grDevices utils datasets methods base loaded via a namespace (and not attached): [1] base64enc_0.1-3 digest_0.6.8 evaluate_0.7.2 IRdisplay_0.3.0.9000 [5] IRkernel_0.3.0.9000 jsonlite_0.9.17 magrittr_1.5 repr_0.1.0.9000 [9] rzmq_0.7.7 stringi_0.5-5 stringr_1.0.0 uuid_0.1-2 Import count data using basic tools ---------------------------------------- We want to read in the count files using more basic tools (important if the count files are not generated fro,m htseq-count). We will import the files as matrices. We start with some of the preliminary steps .. code:: python library(tools) .. code:: python phfile="/home/owzar001/CURRENT/summercourse-2015/Data/sampletable.txt" cntdir="/home/owzar001/CURRENT/summercourse-2015/Data/COUNTS" .. code:: python md5sum(phfile) phdata=read.table(phfile,sep=",",stringsAsFactor=FALSE) .. raw:: html /home/owzar001/CURRENT/summercourse-2015/Data/sampletable.txt: '10cdaaa6e5fc76ab92b6d845d33a2a2f' .. code:: python colnames(phdata)=c("filename","sampid","trt") phdata[["md5sum"]]=md5sum(file.path(cntdir,phdata[["filename"]])) phdata .. raw:: html
filenamesampidtrtmd5sum
1AGTCAA_counts.tsvAGTCAA0a9eaa959aba1b02b3831583c2a9751c8
2AGTTCC_counts.tsvAGTTCC04183767e4eeb75dc582bcf438af13500
3ATGTCA_counts.tsvATGTCA026fbba06520758e5a3acd9bd432ebed4
4CCGTCC_counts.tsvCCGTCC150036a88fd48645f740a31f4f4352cfb
5GTCCGC_counts.tsvGTCCGC1bb1cecd886127159157e9431d072cad5
6GTGAAA_counts.tsvGTGAAA1fa544c0a076eedb54937c7189f4e1fbc
.. code:: python phdata=phdata[c("sampid","filename","trt","md5sum")] phdata .. raw:: html
sampidfilenametrtmd5sum
1AGTCAAAGTCAA_counts.tsv0a9eaa959aba1b02b3831583c2a9751c8
2AGTTCCAGTTCC_counts.tsv04183767e4eeb75dc582bcf438af13500
3ATGTCAATGTCA_counts.tsv026fbba06520758e5a3acd9bd432ebed4
4CCGTCCCCGTCC_counts.tsv150036a88fd48645f740a31f4f4352cfb
5GTCCGCGTCCGC_counts.tsv1bb1cecd886127159157e9431d072cad5
6GTGAAAGTGAAA_counts.tsv1fa544c0a076eedb54937c7189f4e1fbc
.. code:: python phdata[["trt"]]=as.factor(phdata[["trt"]]) This function reads the data from one file and returns the results as a matrix. It is designed to only keep the rows for which the gene id starts with the prefix "GeneID" .. code:: python readcnts=function(fname,sep="\t",prefix="GeneID",collab="V1",header=FALSE) { ### Import text file dat=read.table(fname,sep=sep,header=header,stringsAsFactor=FALSE) ### Only keep rows for which the gene id matches with the prefix dat=dat[substr(dat[[collab]],1,nchar(prefix))==prefix,] return(dat) } Let's read in a file .. code:: python file1=readcnts("/home/owzar001/CURRENT/summercourse-2015/Data/COUNTS/AGTCAA_counts.tsv") .. code:: python dim(file1) .. raw:: html
  1. 4436
  2. 2
.. code:: python head(file1) .. raw:: html
V1V2
1GeneID:12930114118
2GeneID:1293011530
3GeneID:1293011615
4GeneID:1293011712
5GeneID:12930118122
6GeneID:1293011960
Now read in all files .. code:: python ## Read in the first file countdat=readcnts(file.path(cntdir,phdata$filename[1])) ### Assign the sample id as the column name names(countdat)[2]=phdata$sampid[1] ### Repeat the last two steps for files 2 ... 6 and merge ### along each step for(i in 2:nrow(phdata)) { dat2=readcnts(file.path(cntdir,phdata$filename[i])) names(dat2)[2]=phdata$sampid[i] countdat=merge(countdat,dat2,by="V1") } geneid=countdat$V1 countdat=as.matrix(countdat[,-1]) row.names(countdat)=geneid .. code:: python head(countdat) .. raw:: html
AGTCAAAGTTCCATGTCACCGTCCGTCCGCGTGAAA
GeneID:12930114118137149120161174
GeneID:12930115304225183234
GeneID:12930116155537493627
GeneID:1293011712121311 7 6
GeneID:12930118122137 94 48131 69
GeneID:12930119608878534329
.. code:: python library(DESeq2) .. parsed-literal:: Loading required package: S4Vectors Loading required package: stats4 Loading required package: BiocGenerics Loading required package: parallel Attaching package: ‘BiocGenerics’ The following objects are masked from ‘package:parallel’: clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following object is masked from ‘package:stats’: xtabs The following objects are masked from ‘package:base’: anyDuplicated, append, as.data.frame, as.vector, cbind, colnames, do.call, duplicated, eval, evalq, Filter, Find, get, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rep.int, rownames, sapply, setdiff, sort, table, tapply, union, unique, unlist, unsplit Creating a generic function for ‘nchar’ from package ‘base’ in package ‘S4Vectors’ Loading required package: IRanges Loading required package: GenomicRanges Loading required package: GenomeInfoDb Loading required package: Rcpp Loading required package: RcppArmadillo .. code:: python dds=DESeqDataSetFromMatrix(countdat,DataFrame(phdata),design=~trt) .. code:: python dds .. parsed-literal:: class: DESeqDataSet dim: 4436 6 exptData(0): assays(1): counts rownames(4436): GeneID:12930114 GeneID:12930115 ... GeneID:13406005 GeneID:13406006 rowRanges metadata column names(0): colnames(6): AGTCAA AGTTCC ... GTCCGC GTGAAA colData names(4): sampid filename trt md5sum .. code:: python sessionInfo() .. parsed-literal:: R version 3.2.1 (2015-06-18) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Debian GNU/Linux 8 (jessie) locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] parallel stats4 tools stats graphics grDevices utils [8] datasets methods base other attached packages: [1] DESeq2_1.8.1 RcppArmadillo_0.5.200.1.0 [3] Rcpp_0.11.6 GenomicRanges_1.20.5 [5] GenomeInfoDb_1.4.1 IRanges_2.2.5 [7] S4Vectors_0.6.2 BiocGenerics_0.14.0 loaded via a namespace (and not attached): [1] RColorBrewer_1.1-2 futile.logger_1.4.1 plyr_1.8.3 [4] XVector_0.8.0 futile.options_1.0.0 base64enc_0.1-3 [7] rpart_4.1-9 digest_0.6.8 uuid_0.1-2 [10] RSQLite_1.0.0 annotate_1.46.1 lattice_0.20-31 [13] jsonlite_0.9.16 evaluate_0.7 gtable_0.1.2 [16] DBI_0.3.1 IRdisplay_0.3 IRkernel_0.4 [19] proto_0.3-10 gridExtra_2.0.0 rzmq_0.7.7 [22] genefilter_1.50.0 cluster_2.0.1 repr_0.3 [25] stringr_1.0.0 locfit_1.5-9.1 nnet_7.3-9 [28] grid_3.2.1 Biobase_2.28.0 AnnotationDbi_1.30.1 [31] XML_3.98-1.3 survival_2.38-2 BiocParallel_1.2.9 [34] foreign_0.8-63 latticeExtra_0.6-26 Formula_1.2-1 [37] geneplotter_1.46.0 ggplot2_1.0.1 reshape2_1.4.1 [40] lambda.r_1.1.7 magrittr_1.5 splines_3.2.1 [43] scales_0.2.5 Hmisc_3.16-0 MASS_7.3-40 [46] xtable_1.7-4 colorspace_1.2-6 stringi_0.5-5 [49] acepack_1.3-3.3 munsell_0.4.2