Comparing Base Graphics with ``ggplot2`` =========================== .. code:: python library(ggplot2) library(reshape2) library(lattice) Basic plots ---------------------------------------- .. code:: python head(mtcars) .. raw:: html
mpgcyldisphpdratwtqsecvsamgearcarb
Mazda RX42161601103.92.6216.460144
Mazda RX4 Wag2161601103.92.87517.020144
Datsun 71022.84108933.852.3218.611141
Hornet 4 Drive21.462581103.083.21519.441031
Hornet Sportabout18.783601753.153.4417.020032
Valiant18.162251052.763.4620.221031
.. code:: python with(mtcars, plot(wt, mpg)) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_4_0.png :width: 600 .. code:: python ggplot(mtcars, aes(x=wt, y=mpg)) + geom_point() .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_5_0.png :width: 600 .. code:: python scatter.smooth(mtcars$wt, mtcars$mpg) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_6_0.png :width: 600 .. code:: python ggplot(mtcars, aes(x=wt, y=mpg)) + geom_point() + geom_smooth(method=loess) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_7_0.png :width: 600 .. code:: python df <- mtcars[order(mtcars$wt),] with(df, plot(wt, mpg, type="b")) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_8_0.png :width: 600 .. code:: python ggplot(mtcars, aes(x=wt, y=mpg)) + geom_point() + geom_line() .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_9_0.png :width: 600 .. code:: python with(mtcars, hist(mpg, breaks=10)) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_10_0.png :width: 600 .. code:: python ggplot(mtcars, aes(x=mpg)) + geom_histogram(binwidth=2) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_11_0.png :width: 600 .. code:: python plot(density(mtcars$mpg), main="Density plot") .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_12_0.png :width: 600 .. code:: python density(mtcars$mpg) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_14_0.png :width: 600 .. parsed-literal:: Call: density.default(x = mtcars$mpg) Data: mtcars$mpg (32 obs.); Bandwidth 'bw' = 2.477 x y Min. : 2.97 Min. :6.481e-05 1st Qu.:12.56 1st Qu.:5.461e-03 Median :22.15 Median :1.926e-02 Mean :22.15 Mean :2.604e-02 3rd Qu.:31.74 3rd Qu.:4.530e-02 Max. :41.33 Max. :6.795e-02 .. code:: python ggplot(mtcars, aes(x=mpg)) + geom_line(stat="density") + xlim(2.97, 41.33) + labs(title="Density plot") .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_15_0.png :width: 600 .. code:: python attach(mtcars) hist(mpg, breaks=10, probability = TRUE, main="") rug(mpg) x <- seq(min(mpg), max(mpg), length.out = 50) lines(x, dnorm(x, mean=mean(x), sd=sd(x)), col="red", lwd=2) detach(mtcars) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_16_0.png :width: 600 .. code:: python ggplot(mtcars, aes(x=mpg)) + geom_histogram(aes(y=..density..), binwidth=2, color="black", alpha=0) + stat_function(fun = dnorm, arg=list(mean=mean(mtcars$mpg), sd=sd(mtcars$mpg)), color="red") + geom_rug() .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_17_0.png :width: 600 .. code:: python with(mtcars, pie(table(carb))) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_19_0.png :width: 600 .. code:: python df <- data.frame(table(mtcars$carb)) colnames(df) <- c("Carb", "Freq") df .. raw:: html
CarbFreq
117
2210
333
4410
561
681
.. code:: python ggplot(df, aes(x=1, y=Freq, fill=Carb)) + geom_bar(stat="identity", color="black") + coord_polar(theta="y") + theme(axis.ticks=element_blank(), axis.text.y=element_blank(), axis.text.x=element_text(colour='black'), axis.title=element_blank()) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_20_0.png :width: 600 .. code:: python with(mtcars, barplot(table(carb))) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_21_0.png :width: 600 .. code:: python ggplot(mtcars, aes(x=factor(carb))) + geom_bar() .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_22_0.png :width: 600 .. code:: python with(mtcars, barplot(table(carb), horiz=TRUE)) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_23_0.png :width: 600 .. code:: python ggplot(mtcars, aes(x=factor(carb))) + geom_bar() + coord_flip() .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_24_0.png :width: 600 .. code:: python attach(mtcars) (tbl <- table(carb, am)) barplot(tbl, beside=TRUE, legend=rownames(tbl), col=heat.colors(carb)) detach(mtcars) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_25_0.png :width: 600 .. parsed-literal:: am carb 0 1 1 3 4 2 6 4 3 3 0 4 7 3 6 0 1 8 0 1 .. code:: python # Threebartable = as.data.frame(table(simData$FacVar1, simData$FacVar2, simData$FacVar3)) ## CrossTab # ggplot(Threebartable,aes(x=Var3,y=Freq,fill=Var2))+geom_bar(position="dodge")+facet_wrap(~Var1) ## Bar plot with facetting ggplot(mtcars, aes(x=factor(am), fill=factor(carb))) + geom_bar(position="dodge") + scale_fill_brewer(palette="Oranges") .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_26_0.png :width: 600 .. code:: python boxplot(log1p(mtcars)) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_28_1.png :width: 600 .. code:: python head(mtcars) .. raw:: html
mpgcyldisphpdratwtqsecvsamgearcarb
Mazda RX42161601103.92.6216.460144
Mazda RX4 Wag2161601103.92.87517.020144
Datsun 71022.84108933.852.3218.611141
Hornet 4 Drive21.462581103.083.21519.441031
Hornet Sportabout18.783601753.153.4417.020032
Valiant18.162251052.763.4620.221031
.. code:: python df <- melt(mtcars) ggplot(df, aes(x=variable, y=value)) + geom_boxplot() + scale_y_continuous(trans="log1p") .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_29_0.png :width: 600 .. parsed-literal:: No id variables; using all as measure variables .. code:: python df <- mtcars[order(-mtcars$mpg),] dotchart(df$mpg, labels=row.names(df)) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_30_0.png :width: 600 .. code:: python df <- mtcars[order(-mtcars$mpg),] df$names <- as.factor(rownames(df)) ggplot(df, aes(x=reorder(names, -mpg), y=mpg)) + geom_dotplot(binaxis="y", stackdir="center", binwidth=0.5) + coord_flip() .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_31_0.png :width: 600 .. code:: python dotchart(df$mpg, labels=row.names(df), groups=df$cyl, color=df$cyl, pch=19) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_32_0.png :width: 600 .. code:: python ggplot(df, aes(x=reorder(names, mpg), y=mpg, col=factor(cyl))) + geom_point() + facet_grid(. ~ cyl) + guides(col=FALSE) + coord_flip() .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_32_0.png :width: 600 .. code:: python pairs(~mpg + drat + wt, data=mtcars) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_33_0.png :width: 600 **Note**: ``splom`` is from the lattice package - ggpolot does not do scatterplot matrices .. code:: python splom(mtcars[, c("mpg", "drat", "wt")]) .. image:: BaseGraphicsGGPlotComparison_files/BaseGraphicsGGPlotComparison_35_0.png :width: 600 Using ``ggplot2`` (Grammar of Graphics) --------------------------------------- In addition to the ``base`` plotting facilites we have been using, R also has the ``ggplot2`` package that can be used to generate beutfiul graphs. We will only touch on a small subset of ``ggplot2`` capabiliites here. **References** - `R Graphics Cookbook `__ .. code:: python library(ggplot2) library(grid) library(gridExtra) .. code:: python head(mtcars) .. raw:: html
mpgcyldisphpdratwtqsecvsamgearcarb
Mazda RX42161601103.92.6216.460144
Mazda RX4 Wag2161601103.92.87517.020144
Datsun 71022.84108933.852.3218.611141
Hornet 4 Drive21.462581103.083.21519.441031
Hornet Sportabout18.783601753.153.4417.020032
Valiant18.162251052.763.4620.221031
Chaining plotting functions --------------------------- - ggplot() - aes() - geom\_xxx() - annotationa .. code:: python ggplot(data=mtcars, aes(x=wt, y=mpg)) + geom_point() + labs(title="Simple scatter plot", x="Weight", y="Miles per gallon") .. image:: GGPlot2Graphics_files/GGPlot2Graphics_5_0.png :width: 600 .. code:: python ggplot(data=mtcars, aes(x=wt, y=mpg)) + geom_point(color="blue", size=5) + geom_smooth(method="loess", color="orange") + labs(title="Fitting a loess", x="Weight", y="Miles per gallon") .. image:: GGPlot2Graphics_files/GGPlot2Graphics_6_0.png :width: 600 .. code:: python ggplot(data=mtcars, aes(x=wt, y=mpg, color=factor(cyl),, shape=factor(am))) + geom_point(size=5) + labs(title="Use shape and color", x="Weight", y="Miles per gallon") .. image:: GGPlot2Graphics_files/GGPlot2Graphics_7_0.png :width: 600 .. code:: python p <- ggplot(mtcars, aes(x=wt, y=mpg)) p + geom_point(aes(size=hp, color=disp)) + ggtitle("Use color and size") + scale_colour_gradientn(colours=heat.colors(10)) + scale_size(range=c(2, 10)) .. image:: GGPlot2Graphics_files/GGPlot2Graphics_8_0.png :width: 600 .. code:: python ggplot(data=mtcars, aes(x=hp, y=mpg, color=factor(cyl))) + geom_point(size=5) + facet_grid(am ~ vs, labeller = label_both) + labs(title="Split plots with conditioning", x="Horsepower", y="Miles per gallon") .. image:: GGPlot2Graphics_files/GGPlot2Graphics_9_0.png :width: 600 More examples ---------------------------------------- .. code:: python p4 <- ggplot(mtcars, aes(x=factor(gear), y=wt)) + geom_boxplot() p5 <- ggplot(data.frame(x=seq(0, 2*pi, length.out = 50)), aes(x=x)) + stat_function(fun=sin, geom="line") p6 <- ggplot(mtcars, aes(x=mpg, alpha=0.5, fill=factor(gear))) + geom_density() + guides(alpha=FALSE, fill=FALSE) grid.arrange(p4, p5, p6, ncol = 1) .. image:: GGPlot2Graphics_files/GGPlot2Graphics_11_0.png :width: 600 Plot aesthetics ---------------------------------------- .. code:: python ggplot(mtcars, aes(x=wt, y=mpg)) + geom_point(colour="black", size = 4.5, show_guide = TRUE) + geom_point(colour="pink", size = 4, show_guide = TRUE) + geom_point(aes(shape = factor(cyl))) + theme_bw(base_size=18) + theme(aspect.ratio=1) .. image:: GGPlot2Graphics_files/GGPlot2Graphics_13_0.png :width: 600 Adding fitted lines ---------------------------------------- .. code:: python p <- ggplot(mtcars, aes(x=wt, y=mpg)) p1 <- p + geom_point() + stat_smooth(method=lm, se=FALSE) p2 <- p + geom_point() + stat_smooth(method=lm, level=0.95) p3 <- p + geom_point() + stat_smooth(method=loess, color='red') p4 <- ggplot(mtcars, aes(x=wt, y=mpg, color=factor(am))) + geom_point() + geom_smooth(method='loess') + guides(color=FALSE) grid.arrange(p1, p2, p3, p4, ncol = 2) .. image:: GGPlot2Graphics_files/GGPlot2Graphics_15_0.png :width: 600 Using existing model fits ---------------------------------------- .. code:: python m1 <- lm(mpg ~ wt, data=mtcars) pred1 <- data.frame(wt=seq(min(mtcars$wt), max(mtcars$wt), length.out=100)) pred <- predict(m1, pred1, se.fit=TRUE) pred1$mpg <- pred$fit pred1$low <- pred1$mpg - 1.96*pred$se.fit pred1$high <- pred1$mpg + 1.96*pred$se.fit .. code:: python m2 <- loess(mpg ~ wt, data=mtcars) pred2 <- data.frame(wt=seq(min(mtcars$wt), max(mtcars$wt), length.out=100)) pred2$mpg <- predict(m2, pred2) .. code:: python p <- ggplot(mtcars, aes(x=wt, y=mpg)) p1 <- p + geom_point(size=4, color='gray40') + geom_line(data=pred1) p2 <- p + geom_point(size=4, color='gray40') + geom_line(data=pred1) + annotate("text", label="r^2 == 0.75", parse=TRUE, x=4.8, y=32) p3 <- p + geom_point(size=4, color='gray40') + geom_line(data=pred1) + geom_ribbon(data=pred1, aes(ymin=low, ymax=high), alpha=0.3) + annotate("text", label="r^2 == 0.75", parse=TRUE, x=4.8, y=32) p4 <- p + geom_point(size=4, color='blue', alpha=0.5) + geom_line(data=pred2, color='red', size=1) grid.arrange(p1, p2, p3, p4, ncol = 2) .. image:: GGPlot2Graphics_files/GGPlot2Graphics_19_0.png :width: 600 Fitting a lgoistic ---------------------------------------- .. code:: python ggplot(mtcars, aes(x=mpg, y=am)) + geom_point(position=position_jitter(width=.3, height=.08), shape=21, alpha=0.6, size=3) + stat_smooth(method=glm, family=binomial, color="red") .. image:: GGPlot2Graphics_files/GGPlot2Graphics_21_0.png :width: 600