Base Graphics ============= Building Graphs --------------- Incremental building of features into graphs. `Less is more `__ `More visualization tips `__ **References** 1. `Graphical parameters `__ 2. `Colors `__ 3. Named colors - type ``colors()`` 4. `Using color scales and plattes in R `__ 5. ``?plot`` 6. ``?par`` 7. Specific options e.g. ``?pch`` Basic plots ~~~~~~~~~~~ .. code:: python head(mtcars) .. raw:: html
mpgcyldisphpdratwtqsecvsamgearcarb
Mazda RX42161601103.92.6216.460144
Mazda RX4 Wag2161601103.92.87517.020144
Datsun 71022.84108933.852.3218.611141
Hornet 4 Drive21.462581103.083.21519.441031
Hornet Sportabout18.783601753.153.4417.020032
Valiant18.162251052.763.4620.221031
.. code:: python with(mtcars, plot(wt, mpg)) .. image:: BaseGraphics_files/BaseGraphics_7_0.png :width: 600 .. code:: python scatter.smooth(mtcars$wt, mtcars$mpg) .. image:: BaseGraphics_files/BaseGraphics_8_0.png :width: 600 .. code:: python df <- mtcars[order(mtcars$wt),] with(df, plot(wt, mpg, type="b")) .. image:: BaseGraphics_files/BaseGraphics_9_0.png :width: 600 .. code:: python with(mtcars, hist(mpg, breaks=10)) .. image:: BaseGraphics_files/BaseGraphics_10_0.png :width: 600 .. code:: python plot(density(mtcars$mpg), main="Density plot") .. image:: BaseGraphics_files/BaseGraphics_11_0.png :width: 600 .. code:: python attach(mtcars) hist(mpg, breaks=10, probability = TRUE, main="") rug(mpg) x <- seq(min(mpg), max(mpg), length.out = 50) lines(x, dnorm(x, mean=mean(x), sd=sd(x)), col="red", lwd=2) detach(mtcars) .. image:: BaseGraphics_files/BaseGraphics_12_0.png :width: 600 .. code:: python with(mtcars, pie(table(carb))) .. image:: BaseGraphics_files/BaseGraphics_13_0.png :width: 600 .. code:: python with(mtcars, barplot(table(carb))) .. image:: BaseGraphics_files/BaseGraphics_14_0.png :width: 600 .. code:: python with(mtcars, barplot(table(carb), horiz=TRUE)) .. image:: BaseGraphics_files/BaseGraphics_15_0.png :width: 600 .. code:: python attach(mtcars) (tbl <- table(carb, am)) barplot(tbl, beside=TRUE, legend=rownames(tbl), col=heat.colors(carb)) detach(mtcars) .. image:: BaseGraphics_files/BaseGraphics_16_0.png :width: 600 .. parsed-literal:: am carb 0 1 1 3 4 2 6 4 3 3 0 4 7 3 6 0 1 8 0 1 .. code:: python boxplot(log1p(mtcars)) .. image:: BaseGraphics_files/BaseGraphics_17_0.png :width: 600 .. code:: python df <- mtcars[order(-mtcars$mpg),] dotchart(df$mpg, labels=row.names(df)) .. image:: BaseGraphics_files/BaseGraphics_18_0.png :width: 600 .. code:: python dotchart(df$mpg, labels=row.names(df), groups=df$cyl, color=df$cyl, pch=19) .. image:: BaseGraphics_files/BaseGraphics_19_0.png :width: 600 .. code:: python pairs(~mpg + drat + wt, data=mtcars) .. image:: BaseGraphics_files/BaseGraphics_20_0.png :width: 600 Building plots ~~~~~~~~~~~~~~ - Local customization of plots - Glaobl customization of plots - Adding more stuff to a plot - points - lines - text - mathematical expressions - Combining plots - Saving plots Scatterplot ^^^^^^^^^^^ .. code:: python df <- mtcars[order(mtcars$wt),] attach(df) plot(wt, mpg) detach(df) .. image:: BaseGraphics_files/BaseGraphics_23_0.png :width: 600 Combining plots ~~~~~~~~~~~~~~~ .. code:: python par(mfrow=c(2,2)) plot(rnorm(10)) plot(rnorm(10)) plot(rnorm(10)) plot(rnorm(10)) .. image:: BaseGraphics_files/BaseGraphics_25_0.png :width: 600 .. code:: python (m <- matrix(c(1,1,2,3), 2, 2, byrow=TRUE)) .. raw:: html
11
23
.. code:: python layout(m) plot(rnorm(10)) plot(rnorm(10)) plot(rnorm(10)) .. image:: BaseGraphics_files/BaseGraphics_27_0.png :width: 600 .. code:: python layout(m, widths=c(1,2), heights=c(2,1)) plot(rnorm(10)) plot(rnorm(10)) plot(rnorm(10)) .. image:: BaseGraphics_files/BaseGraphics_28_0.png :width: 600 .. code:: python orig <- par(no.readonly=TRUE) x <- rnorm(10) y <- rnorm(10) par(fig = c(0, 0.8, 0, 0.8)) plot(x, y) par(fig = c(0, 0.8, 0.6, 1), new=TRUE) plot(density(x), axes=FALSE, main="", xlab="") par(fig = c(0.6, 1, 0, 0.8), new=TRUE) boxplot(y, axes=FALSE) par(orig) .. image:: BaseGraphics_files/BaseGraphics_29_0.png :width: 600 Plotting Graphcs and Heatmpas ---------------------------------------- Graphs ~~~~~~ It may be necessary to install first .. code:: r install.packages("igraphdata", repos = "http://cran.r-project.org") .. code:: python library(igraph) library(igraphdata) .. code:: python data(macaque) .. code:: python plot(macaque, layout=layout.auto, vertex.shape="circle", vertex.size=8, edge.arrow.size=0.5, vertex.label=NA) .. image:: MiscGraphics_files/MiscGraphics_4_0.png :width: 600 Heatmap ~~~~~~~ .. code:: python heatmap(as.matrix(mtcars), Rowv = NA, Colv = NA, scale = "column") .. image:: MiscGraphics_files/MiscGraphics_6_0.png :width: 600 Heatmap with dendrogram ~~~~~~~~~~~~~~~~~~~~~~~ .. code:: python heatmap(as.matrix(mtcars), scale = "column") .. image:: MiscGraphics_files/MiscGraphics_8_0.png :width: 600 Fancy heatmaps ~~~~~~~~~~~~~~ Also see `d3heatmaps `__ if you want an interactive heatmap. This does not seem to work within the notebook but will work in RStudio or an R script. .. code:: python library(pheatmap) .. code:: python pheatmap(as.matrix(mtcars), scale = "column") .. image:: MiscGraphics_files/MiscGraphics_11_0.png :width: 600 .. code:: python library(gplots) .. code:: python heatmap.2(as.matrix(mtcars), scale = "column", col=redgreen) .. image:: MiscGraphics_files/MiscGraphics_13_0.png :width: 600 Work! ^^^^^ Here we will try to replicate the noise discovery heatmap shown in the statistics class. .. code:: python suppressMessages(library(genefilter)) Perform noise discovery ~~~~~~~~~~~~~~~~~~~~~~~ .. code:: python set.seed(123) n <- 20 # number of subjects m <- 20000 # number of genes alpha <- 0.005 # significance level # create a matrix of gene expression values with m rows and 2*n columns M <- matrix(rnorm(2*n*m), m, 2*n) # give row and column names rownames(M) <- paste("G", 1:m, sep="") colnames(M) <- paste("id", 1:(2*n), sep="") # assign subjects inot equal sized groups grp <- factor(rep(0:1, c(n, n))) # calculate p-value using t-test for mean experession value of each gene pvals <- rowttests(M, grp)$p.value # extract the genes which meet the specified significance level hits <- M[pvals < alpha,] - Use pheatmap to plot a heatmap - Remove the row names (Google or use R's built-in help to figure out to do this) - Use this color palette to map expression values to a red-blakc-green scale ``colorRampPalette(c("red3", "black", "green3"))(50)``